Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Intervalo de año de publicación
1.
Toxins (Basel) ; 15(11)2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37999488

RESUMEN

L-Amino acid oxidase (LAAO) is an enzyme found in snake venom that has multifaceted effects, including the generation of hydrogen peroxide (H2O2) during oxidative reactions, leading to various biological and pharmacological outcomes such as apoptosis, cytotoxicity, modulation of platelet aggregation, hemorrhage, and neutrophil activation. Human neutrophils respond to LAAO by enhancing chemotaxis, and phagocytosis, and releasing reactive oxygen species (ROS) and pro-inflammatory mediators. Exosomes cellular nanovesicles play vital roles in intercellular communication, including immune responses. This study investigates the impact of Calloselasma rhodostoma snake venom-derived LAAO (Cr-LAAO) on human neutrophil exosome release, including activation patterns, exosome formation, and content. Neutrophils isolated from healthy donors were stimulated with Cr-LAAO (100 µg/mL) for 3 h, followed by exosome isolation and analysis. Results show that Cr-LAAO induces the release of exosomes with distinct protein content compared to the negative control. Proteomic analysis reveals proteins related to the regulation of immune responses and blood coagulation. This study uncovers Cr-LAAO's ability to activate human neutrophils, leading to exosome release and facilitating intercellular communication, offering insights into potential therapeutic approaches for inflammatory and immunological disorders.


Asunto(s)
Exosomas , L-Aminoácido Oxidasa , Humanos , L-Aminoácido Oxidasa/farmacología , L-Aminoácido Oxidasa/metabolismo , Neutrófilos , Exosomas/metabolismo , Peróxido de Hidrógeno/farmacología , Proteómica , Venenos de Serpiente
2.
Int Immunopharmacol ; 112: 109194, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36041255

RESUMEN

Phospholipases A2 (PLA2s) are proteins found in snake venoms with hemolytic, anticoagulant, myotoxic, edematogenic, bactericidal and inflammatory actions. In Bothrops jararacussu snake venom were isolated a Lys49-PLA2 (BthTX-I) and an Asp49-PLA2 (BthTX-II) with myotoxic and inflammatory actions. Both PLA2s can activate the NLRP3 inflammasome, an intracytoplasmic platform that recognizes molecules released when tissue is damaged liberating IL-1ß that contributes to the inflammatory response observed in envenoming. The dynamic of action of BthTX-I and BthTX-II in both thioglycollate (TG)-elicited macrophages and C2C12 myoblasts and the involvement of EP1 and EP2 receptors, and PGE2 in NLRP3 inflammasome activation were evaluated. Both toxins induced PGE2 liberation and inflammasome components (NLRP3, Caspase-1, ASC, IL-1ß, and IL18), IL-6, P2X7, COX-1, COX-2, EP2 and EP4 gene expression in TG-elicited macrophages but not in C2C12 myoblasts. EP2 (PF04418948) and EP4 (GW627368X) inhibitors abolished this effect. Both PLA2s also induced NLRP3 inflammasome protein expression that was abolished with the inhibitors used. Immunofluorescence and IL-1ß assays confirmed the NLRP3 activation in TG-elicited macrophages with the participation of both EP2 and EP4 receptors confirming their involvement in this effect. All in all, BthTX-I and BthTX-II activate macrophages and induce the NLRP3 inflammasome complex activation with the participation of the PGE2 via COX pathway and EP2 and EP4, both PGE2 receptors, contributing to the local inflammatory effects observed in envenoming.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Ratones , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ciclooxigenasa 2/genética , Tioglicolatos , Interleucina-18 , Interleucina-6 , Fosfolipasas A2 , Venenos de Serpiente , Macrófagos , Caspasa 1 , Dinoprostona , Anticoagulantes , Poliésteres
3.
Sci Rep ; 12(1): 4706, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304541

RESUMEN

Convulxin (CVX), a C-type lectin-like protein isolated from the venom of the snake species, Crotalus durissus terrificus, stimulates platelet aggregation by acting as a collagen receptor agonist for glycoprotein VI found in the platelets. The effect of CVX on platelets has been studied, but its effect on human peripheral blood mononuclear cells (PBMCs) remains unclear. Given the significance of PBMCs in inflammation, this study explored the effect of CVX on PBMCs, specifically regarding NLRP3 inflammasome activation by assessing cell viability, ability to induce cell proliferation, reactive oxygen species (ROS) and nitric oxide production, interleukin (IL)-2 and IL-10 secretion, NLRP3 complex activation, and the role of C-type lectin-like receptors (CTLRs) in these. CVX was not toxic to PBMCs at the investigated concentrations and did not increase PBMC growth or IL-2 release; however, CVX induced IL-10 release and ROS generation via monocyte activation. It also activated the NLRP3 complex, resulting in IL-1ß induction. Furthermore, the interaction between CVX and Dectin-2, a CTLR, induced IL-10 production. CVX interaction with CTLR has been demonstrated by laminarin therapy. Because of the involvement of residues near the Dectin-2 carbohydrate-recognition site, the generation of ROS resulted in inflammasome activation and IL-1ß secretion. Overall, this work helps elucidate the function of CVX in immune system cells.


Asunto(s)
Venenos de Crotálidos , Crotalus , Animales , Venenos de Crotálidos/química , Crotalus/metabolismo , Humanos , Inflamasomas , Interleucina-10 , Interleucina-1beta , Lectinas Tipo C/metabolismo , Leucocitos Mononucleares/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Especies Reactivas de Oxígeno
4.
Toxicon ; 198: 171-175, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34029603

RESUMEN

Photobiomodulation using light-emitting diode (LED) treatment has analgesic and anti-inflammatory effects which can be an effective therapeutic associated with serum therapy for local treatment of snakebites. Here we explored the effects of LED treatment on isolated macrophage under Bothrops jararacussu venom. Results showed that LED induced IL-6 and TNF-α genes down-regulation and, TGF and ARG1 genes up-regulation which indicates a polarization of macrophages to an M2 phenotype contributing to both tissue repair and resolution of inflammation.


Asunto(s)
Bothrops , Venenos de Crotálidos , Terapia por Luz de Baja Intensidad , Animales , Macrófagos , Ratones , Fenotipo
5.
Chem Biol Interact ; 333: 109347, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33259806

RESUMEN

Several reports have suggested that photobiomodulation, owing to its analgesic, anti-inflammatory, and healing effects, may be an effective therapeutic option for local effects of snakebites when the availability and accessibility of conventional serum therapy are inefficient and far from medical care centers. Although there have been studies that demonstrate the application of photobiomodulation in the treatment of local adverse events due to snakebites from snakes of the genus Bothrops, its role in the activation of leukocytes, particularly macrophages, has not been evaluated. Here, we assessed the effect of light-emitting diode (LED) treatment on macrophage activation induced by B. jararacussu venom (BjV). LED treatment caused an increase in the viability of macrophages incubated with BjV. This treatment reduced reactive oxygen species (ROS) and nitric oxide (NO) production by macrophages after incubation with BjV. However, LED treatment did not interfere with IL-1ß and IL-10 production by macrophages after incubation with BjV. In conclusion, this study showed that LED treatment has the potential to be used in combination with conventional serum therapy to prevent or minimize the progression of local to severe symptoms after Bothrops envenomation.


Asunto(s)
Bothrops , Venenos de Crotálidos/toxicidad , Terapia por Luz de Baja Intensidad/instrumentación , Macrófagos/efectos de la radiación , Semiconductores , Mordeduras de Serpientes/inmunología , Mordeduras de Serpientes/radioterapia , Animales , Supervivencia Celular/efectos de los fármacos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Espacio Intracelular/efectos de la radiación , Macrófagos/inmunología , Masculino , Ratones , Óxido Nítrico/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Mordeduras de Serpientes/metabolismo , Mordeduras de Serpientes/patología , Superóxidos/metabolismo
6.
Toxicon X ; 6: 100032, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32550587

RESUMEN

Bothrops envenomation is associated with a cellular inflammatory response, characterized by pronounced neutrophil infiltration at the site of injury. Neutrophils act as the first line of defence, owing to their ability to migrate to the infected tissue, promoting an acute inflammatory response. At the site of inflammation, neutrophils perform defence functions such as phagocytosis, release of proteolytic enzymes, generation of reactive oxygen species (ROS), and synthesis of inflammatory mediators such as cytokines and lipid mediators. Neutrophils can also form neutrophil extracellular nets (NETs), webs composed of chromatin and granule proteins. This occurs after neutrophil activation and delivers high concentrations of anti-microbial molecules to the site of injury. This study evaluated the impact of BaTX-II, an Asp49 phospholipase A2 (PLA2) isolated from Bothrops atrox snake venom on human neutrophils in vitro. At non-toxic concentrations, BaTX-II induced hydrogen peroxide production by neutrophils, and this was reduced by wortmannin, a PI3K inhibitor. BaTX-II stimulated IL-1ß, IL-8, LTB4, myeloperoxidase (MPO), and DNA content release, consistent with NET formation. This is the first study to show the triggering of relevant pro-inflammatory events by PLA2 Asp49 isolated from secretory venom.

7.
Curr Med Chem ; 25(21): 2520-2530, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29119915

RESUMEN

BACKGROUND: LAAOs (EC 1.4.3.2) are found in concentrations that vary according to each species of snakes; Viperidae, Crotalidae and Elapidae contain 1-9% of this enzyme in their venoms. METHODS: This review focuses on an update on molecular mechanisms, platelet activities, antimicrobial, antiprotozoal, induction of apoptosis and inflammatory potential underlying the actions of SVLAAOs. RESULTS: Snake venom LAAOs (SV-LAAOs) have become an interesting subject for pharmacological, structural and molecular studies. CONCLUSION: Although the mechanisms of action of these enzymes are not well understood they are a subject of a variety of studies, because LAAOs are multifunctional enzymes exhibiting a wide range of pharmacological effects, including the inhibition or induction of platelet aggregation, hemolysis and hemorrhage, in addition to the stimulation of apoptosis, the activation of leukocytes and the formation of edema. Moreover, SV-LAAOs play an important role in bactericidal, cytotoxic, anti-parasitic, anti-tumor, and antiviral activities.


Asunto(s)
L-Aminoácido Oxidasa/metabolismo , Venenos de Serpiente/farmacología , Animales , Apoptosis/efectos de los fármacos , Edema/tratamiento farmacológico , Hemólisis/efectos de los fármacos , Hemorragia/tratamiento farmacológico , Humanos , L-Aminoácido Oxidasa/química , Leucocitos/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Venenos de Serpiente/química , Venenos de Serpiente/metabolismo , Serpientes
8.
Basic Clin Pharmacol Toxicol ; 122(4): 413-423, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29067765

RESUMEN

Snake venom phospholipases A2 (PLA2 s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA2 homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA2 s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 µg/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA2 from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.


Asunto(s)
Antibacterianos/farmacología , Venenos de Crotálidos/enzimología , Fosfolipasas A2/química , Viperidae , Animales , Antibacterianos/síntesis química , Cromatografía en Gel/métodos , Cromatografía de Fase Inversa/métodos , Venenos de Crotálidos/química , Diseño de Fármacos , Pruebas de Enzimas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Péptidos/síntesis química , Péptidos/farmacología , Fosfolipasas A2/aislamiento & purificación , Pseudomonas aeruginosa/efectos de los fármacos
9.
Basic Clin Pharmacol Toxicol, v.122, n.4, p.413-423, abr. 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2397

RESUMEN

Snake venom phospholipases A(2) (PLA(2)s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA(2) homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA(2)s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 g/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA(2) from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.

10.
Basic Clin Pharmacol Toxicol ; 122(4): 413-423, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14875

RESUMEN

Snake venom phospholipases A(2) (PLA(2)s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA(2) homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA(2)s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 g/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA(2) from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...